
Nha Do
Data/AI Engineer at AT&T Inc - Chief Data O�ce

This note is a list of Leetcode problems that I have solved. As a Data/ AI engineer, I am
using Python and SQL for my daily work, therefore, they are the main languages I use. Some
questions were solved by C++ when I was in college will also be included.

My solutions are not the most optimal ones in term of Big-O. I am just trying to organize my
work and present some di�erent approaches and functions that might be helpful. This work is
in progress and I will keep it updated over time. Database questions will be my main focus at
this moment.

With that being said, there is a lot of room for optimization and code improvement. I am very
happy to receive any feedback, comment on how to make it better or any related thing.

Any typo, comment or suggestion please email to nhado401@gmail.com.

Last Updated: 01/2025

Database

Question 1: Rising Temperature - Easy

Problem:

Given table Weather that has 3 columns: id (int), recordDate(date), temperature (int).
id is the column with unique values for this table.
There are no di�erent rows with the same recordDate.
This table contains information about the temperature on a certain day.

Column Name Type
id int
recordDate date
temperature int

The question asks to write a solution to �nd all dates' id with higher temperatures compared
to its previous dates (yesterday). Return the result table in any order.

There are cases when the date is not continuous. If yesterday's data is missing, then we will
not consider it. For example, there is 2024-01-10 but not 2024-01-09, in that case, we shouldn't
compare temperature on 2024-01-10 with 2024-01-08 (if available).

Approach:

I have 2 approaches on this problem written in PostgreSQL:

1



1. The better way is to avoid any self join or window functions, therefore running time is
improved. I checked the existence of all required conditions in WHERE clause, which
means if the temperature of a certain date is higher than the temperature of that date -
1 (implies of yesterday's data), I will select that id.

2. Another solution is to use LAG window function. It does not give a good running time
in this question but it's interesting to see how LEAD/LAG function works since it might
be helpful for data analysis. I constructed a temporary table with 2 new columns called
prevTemp and prevDate so that each row will have data of previous row about date
and temperature. I will select id that has temperature > prevTemp and recordDate -
prevDate = 1 (to avoid situation where yesterday's data is missing)

Solution:

1.
Select today.id as Id

From Weather today

WHERE Exists (

Select 1

From Weather yesterday

WHERE today.temperature > yesterday.temperature

AND today.recordDate - yesterday.recordDate = 1

)

2.
Select temp.id as Id

From (

Select id,

temperature,

recordDate,

LAG(temperature, 1) OVER (ORDER BY recordDate) as prevTemp,

LAG(recordDate) OVER (ORDER BY recordDate) as prevDate

From Weather ) temp

WHERE temp.temperature > temp.prevTemp

AND temp.recordDate - temp.prevDate = 1

Question 2: Second Highest Salary - Medium

Problem:

Given table Employee that has 2 columns: id (int), salary (int).
id is the primary key (column with unique values) for this table.
Each row of this table contains information about the salary of an employee.

Column Name Type
id int
salary int

The question asks to write a solution to �nd the second highest distinct salary from the Em-
ployee table. If there is no second highest salary, return null.

Approach:

Ranking question could be easily solved by window functions such as ROW_NUMBER(),

2



RANK() or DENSE_RANK(). However, since there are cases when many employees have
the same salary but we're only interested in distinct value, DENSE_RANK() will be the best
candidate.

In my approach, I used DENSE_RANK() to ensure a continuous and unbroken sequence of
ranks so that if I set the condition to pick up row = 2, it's always the second highest row.

The last thing to take care of is the NULL case when the query does not return anything.
For this, I use COALESCE function in PostgreSQL to return NULL value in the absence of
second highest salary.

Solution:

Select

COALESCE((Select temp.salary

FROM (

Select distinct(salary) as salary,

DENSE_RANK() OVER (Order by salary desc) as ro_num

From Employee ) temp

WHERE ro_num = 2), NULL) as SecondHighestSalary

Question 3: Employee Bonus - Easy

Problem:

Given table Employee as below:

Column Name Type
empID int
name varchar
supervisor int
salary int

empId is the column with unique values for this table.
Each row of this table indicates the name and the ID of an employee in addition to their salary
and the id of their manager.

And table Bonus as below:

Column Name Type
empID int
bonus int

empId is the column of unique values for this table.
empId is a foreign key (reference column) to empId from the Employee table.
Each row of this table contains the id of an employee and their respective bonus.

The question asks to write a solution to report the name and bonus amount of each employee
with a bonus less than 1000.
Return the result table in any order.
Note that even if the bonus is NULL, we will also consider and return the corresponding name.

3



Approach:

This question is very straight forward, we can simply do the LEFT JOIN between Employee
and Bonus tables with the �lter of bonus < 1000 or bonus is NULL.

However, the reason why I still want to discuss this question is because it involves to LEFT
JOIN function, which is a very practical function in my day-to-day data analytics. My work
requires me to dive deeply into many data sources and tables and perform the comparison to
understand them. If we want to spot out the discrepancy between 2 tables, for instance, any
records only available in table A but not table B, LEFT JOIN would be very helpful to tackle
this task. Using LEFT JOIN combines with WHERE clause in which some columns in table
B is NULL will resolve it.

In addition, LEFT JOIN will preserve the case table (root table) when we have to JOIN
multiple tables together.

Solution:

Select e.name as name, b.bonus as bonus

From Employee e

LEFT JOIN Bonus b

ON e.empId = b.empId

WHERE b.bonus is NULL

OR b.bonus < 1000

Question 4: Friend Requests II: Who has the most friends - Medium

Problem:

Given table RequestAccepted as below:

Column Name Type
requester_id int
accepter_id int
accept_date date

(requester_id, accepter_id) is the primary key (combination of columns with unique values)
for this table.
This table contains the ID of the user who sent the request, the ID of the user who received
the request, and the date when the request was accepted.
The question asks to write a solution to �nd the people who have the most friends and the
most friends number.
The test cases are generated so that only one person has the most friends.

Approach:

UNION ALL is all you need!! Don't try to use any JOIN.
This question is easy to be overcomplicated, but all it needs is to count the sum of each id from
requester_id and accepter_id columns and pick the highest count. That's all!

I have 2 approaches for the count:

1. Select all requester_id and accepter_id from given table then UNION ALL to create a

4



new table that consists of all ID's from 2 columns without removing duplicate. Then we
just need to count each id and select the highest one.

2. In my initial solution, my idea is the same but I was overthinking to use FULL JOIN.
This also required me to use COALESCE to replace null values caused by FULL JOIN.
Therefore, it became worse than what it needs to be. This approach should be used for
reference only.

Solution:

1.
with allIDs as(

Select requester_id as id

FROM RequestAccepted

UNION ALL

Select accepter_id as id

FROM RequestAccepted

)

Select id, count(*) as num

FROM allIDs

Group by 1

Order by 2 desc

Limit 1

2.
with requester_count as (

Select requester_id, count(*) as r_count

From RequestAccepted

Group by 1

),

accepter_count as (

Select accepter_id, count(*) as a_count

From RequestAccepted

Group by 1

),

temp_count as (

Select COALESCE(r.requester_id, a.accepter_id) as id, COALESCE(r.r_count,0)

as r_count, COALESCE(a.a_count,0) as a_count

From requester_count r

FULL JOIN accepter_count a

ON r.requester_id = a.accepter_id

)

Select temp.id, temp.num

FROM

(Select id, r_count + a_count as num

FROM temp_count

Order by num desc) temp

Limit 1

5



Question 5: Trips and Users - Hard

Problem:

Given table Trips that has 6 columns as below

Column Name Type
id int
client_id int
driver_id int
city_id int
status enum
request_at varchar

id is the primary key (column with unique values) for this table.
The table holds all taxi trips. Each trip has a unique id, while client_id and driver_id are
foreign keys to the users_id at the Users table.
Status is an ENUM (category) type of ('completed', 'cancelled_by_driver', 'cancelled_by_-
client').

And table Users that has 3 columns:

Column Name Type
users_id int
banned enum
role enum

users_id is the primary key (column with unique values) for this table.
The table holds all users. Each user has a unique users_id, and role is an ENUM type of
('client', 'driver', 'partner').
banned is an ENUM (category) type of ('Yes', 'No').

The cancellation rate is computed by dividing the number of canceled (by client or driver)
requests with unbanned users by the total number of requests with unbanned users on that day.

Write a solution to �nd the cancellation rate of requests with unbanned users (both client and
driver must not be banned) each day between "2013-10-01" and "2013-10-03". Round Cancel-
lation Rate to two decimal points.

Return the result table in any order.

Since this question is complicated, see the example below:

6



Trips table:

id client_id driver_id city_id status request_at
1 1 10 1 completed 2013-10-01
2 2 11 1 cancelled_by_driver 2013-10-01
3 3 12 6 completed 2013-10-01
4 4 13 6 cancelled_by_client 2013-10-01
5 1 10 1 completed 2013-10-02
6 2 11 6 completed 2013-10-02
7 3 12 6 completed 2013-10-02
8 2 12 12 completed 2013-10-03
9 3 10 12 completed 2013-10-03
10 4 13 12 cancalled_by_driver 2013-10-03

Users table:

users_id banned role
1 No client
2 Yes client
3 No client
4 No client
10 No driver
11 No driver
12 No driver
13 No driver

Output should be:

Day Cancellation Rate
2013-10-01 0.33
2013-10-02 0.00
2013-10-03 0.50

Explanation:
On 2013-10-01:
- There were 4 requests in total, 2 of which were canceled.
- However, the request with Id=2 was made by a banned client (User_Id=2), so it is ignored
in the calculation.
- Hence there are 3 unbanned requests in total, 1 of which was canceled.
- The Cancellation Rate is (1 / 3) = 0.33
On 2013-10-02:
- There were 3 requests in total, 0 of which were canceled.
- The request with Id=6 was made by a banned client, so it is ignored.
- Hence there are 2 unbanned requests in total, 0 of which were canceled.
- The Cancellation Rate is (0 / 2) = 0.00
On 2013-10-03:
- There were 3 requests in total, 1 of which was canceled.
- The request with Id=8 was made by a banned client, so it is ignored.
- Hence there are 2 unbanned request in total, 1 of which were canceled.
- The Cancellation Rate is (1 / 2) = 0.50

7



Approach:

This question is not really hard but the description is long and quite confusing. Therefore, it
took me a few trial to pass all the test cases but I think my solution is simple and has a pretty
good runtime:

1. Create a temporary table where I count the number of cancelled trips and number of
unbanned clients and driver using CASE-WHEN, grouped by DAY.

2. JOIN Trips table with Users table twice. The �rst JOIN is based on client_id and the
second JOIN is based on driver_id because we need to make sure that both client and
driver must be unbanned.

3. This temporary table will capture everything we need: the number of cancelled trips and
the number of unbanned users for all requested day. Next step is dividing num_cancelled
by num_banned and pick the corresponding day. Note that the question only asks for
each day between "2013-10-01" and "2013-10-03", that's why we need to add one more
WHERE clause to handle this, otherwise, it will calculate for every single day in the table.

Solution:

Select Day, ROUND((num_cancelled/ num_banned),2) as "Cancellation Rate"

FROM (Select t.request_at as Day, t.status as Status,

SUM(Case

WHEN Status = 'cancelled_by_driver' THEN 1

WHEN Status = 'cancelled_by_client' THEN 1

ELSE 0

End) as num_cancelled,

SUM(Case

WHEN u_client.Banned = 'No' THEN 1

WHEN u_driver.Banned = 'No' THEN 1

ELSE 0

End) as num_banned

From Trips t

JOIN Users u_client

ON t.client_id = u_client.users_id

JOIN Users u_driver

ON t.driver_id = u_driver.users_id

WHERE u_client.Banned = 'No'

AND u_driver.Banned = 'No'

Group by Day) tmp

WHERE DAY BETWEEN '2013-10-01' AND '2013-10-03'

8



Algorithm

Question 1: Missing Number - Easy

Problem:

Given an array nums containing n distinct numbers in the range [0, n], return the only number
in the range that is missing from the array. All the numbers of nums are unique.
Example:
Input nums = [9,6,4,2,3,5,7,0,1]
Output 8
Explanation: n = 9 since there are 9 numbers, so all numbers are in the range [0,9]. 8 is the
missing number in the range since it does not appear in nums.

Approach:

The key point here is all numbers are unique so instead of using multiple for-loop, which will
cause the horrible Big-O, we can use a math formula to calculate the sum of n natural integer
and subtract it continuously to each array's element. The result of that subtraction is the
missing number. The runtime complexity will be only O(n).

sum =
n ∗ (n+ 1)

2
(1)

Solution:

class Solution(object):

def missingNumber(self, nums):

"""

:type nums: List[int]

:rtype: int

"""

n = len(nums)

#Set current missing_num equals to the total sum of n numbers

missing_num = n*(n+1)/2

for i in range(n):

#Subtract total sum (missing_num) by each value in given array

missing_num -= nums[i]

return int(missing_num)

Question 2: Longest Common Pre�x - Easy

Problem:

Write a function to �nd the longest common pre�x string amongst an array of strings.

9



If there is no common pre�x, return an empty string "".

Example 1 :
Input: strs = ["�ower","�ow","�ight"]
Output: "�"

Example 2 :
Input: strs = ["dog","racecar","car"]
Output: "" (because there is no common pre�x among the input strings.)

Note that we only care about PREFIX, if the common words are not pre�x, we will not
consider and our code should ignore that scenario.

Approach:

My solution uses nested for loop and my strategy is as below:

1. Start with the �rst letter in the �rst element of the array. Capture both letter and index.

2. Loop through second element of the array (second word) to the end of the array (last
word). Check from each word if the corresponding character at that index equals to letter
from step 1. If it does, increase count by 1. Else, return the output immediately because
it will no longer have any common word.

3. After we exit from the nested loop, we will check if the count = length of the array - 1
meaning that the letter in step 1 presents in all other words in the array (minus 1 because
we already take the �rst word as reference, so the length of the array should be decreased
by 1). If that condition is met, then we �nd the common character between words in
array so we add that into output.

4. Set count = 0 again to start the loop over for the next character.

Note that I take the �rst word as a reference and force it starts from the �rst character to the
end of the word length and break the loop right away when I encounter the mismatch to make
sure I only check for the pre�x.

I also use try-except block to avoid all possible error because there could be cases when the
length of the �rst word is longer than other words in the array. Without the try-except block,
it will get error of index falls outside of the range.

Solution:

class Solution(object):

def longestCommonPrefix(self, strs):

"""

:type strs: List[str]

:rtype: str

"""

output = ""

count = 0

for index, c in enumerate(strs[0]):

for i in range(1,len(strs)):

10



try:

if c == strs[i][index]:

count+=1

else:

return output

except:

pass

if count == len(strs) - 1:

output+=c

count = 0

return output

11


