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Abstract—In recent decades, many applications have been
developed to solve real-world problems, specifically in agriculture
[1]. The U.S. apple industry is worth $15 billion annually but the
apple orchards are under threat not only by pathogens, insects
but also by incorrect and delayed diagnoses [2]. In this project,
we focus on developing a solution to accommodate a
computer-vision-based problem deployed on a digital signal
processor, which has limited memory and performance, without
cloud computing, to detect diseased leaf even at the early stage.
Eventually, we came up with a 4 layers 2D CNN model which has
been successfully implemented on the embedded system with
94.8% accuracy for detecting healthy leaves and classifying them
into different diseased categories. We propose an effective
approach to enhance the embedded machine learning model’s
accuracy by cropping input images to focus only on the
particular patterns while ignoring other redundant information.

Index Terms—Convolutional Neural Networks, Embedded
Machine Learning, Diseased Leaf Detection, Image Processing,
Plant Pathology.

I. INTRODUCTION

IN this project, our main goal is to detect a diseased leaf
from a given input image and classify it into 2 disease
categories: rust or scab if it is not healthy. The entire project is
performed on the STMicroelectronics H7 Nucleo board which
has only 1MB RAM [6]. Thus, we come up with a
pre-processing technique when we cut out the redundant
information on the original image to make it suitable with the
H7 board and by using a lightweight convolutional neural
network in deep learning [3] that outputs probabilities of
different cases. We create a model such that there will always
be one probability that dominates the rest, so we can identify
the output of interest.

A. History
Apples are one of the most important temperate fruit

crops in the world and their products are very popular and
being used in daily activity. However, apple orchards in the
United States are under threat from a large number of
pathogens, insects, and other uncertainty factors [2]. Diseased
leaves raise a major threat to the overall productivity and
quality of apple’s products [4]. It may be too late to help when
the issue is recognized, but appropriate and timely diagnosis
may be extremely important in preventing the problem. The
current process of disease diagnosis is mainly based on human
scouting. This is a set of several steps which sometimes
require having deep knowledge and specific equipment for a
correct diagnosis and it may include [5]:

1) Proper plant identification.
2) Recognize healthy plant appearance.
3) Identify characteristic symptoms.
4) Identify symptom variability.
5) Look for signs of biotic causal agents.
6) Identify plant parts affected.
7) Check the distribution of symptoms
8) Check for host specificity.
9) Lab tests.
Obviously, they are quite complicated for the majority of

people or gardeners and are time-consuming or even
expensive. More seriously, the misdiagnosis has caused
significant impacts on agriculture and can lead to misuse of
chemical compounds, increased input costs, even economic
loss, and environmental impacts [4].

To address this kind of problem, computer vision-based
models have shown promise for plant disease detection and
classification and have been proved for convenience and
reducing costs [1].

Thus, there are many online competitions for designing a
useful machine learning model, and “Plant Pathology” is one
of them. It has been organized by Kaggle continuously for a
couple of years and the organizer has significantly increased
the number of foliar disease images and added additional
disease categories for each year [4].

The training dataset that we collected and used in this
project is from the 2020 competition, which contains 1729
RGB images of 3 categories: healthy, rust, and scab.

B. Global Constraints
We use the STMicroelectronics H7 Nucleo board which

has only 1MB memory constraint in total [6]. As a result, we
must be mindful of the memory allocation required for the
CNN model and its computation. Our collected inputs are the
RGB images which contain a lot more information than
gray-scale images and are too large for the H7’s memory. We
have to come up with a solution to reduce the input’s size
while keeping all the important information for the model to
predict the output correctly.

With these constraints in mind, we understood that
pre-processing is extremely important and could significantly
affect the final predictions. Clearly, in order to create an
embeddable model, the trade-off between performance and
accuracy is inevitable, but our optimal solution will minimize
it to be acceptable.



II. MOTIVATION

The U.S. apple industry is worth $15 billion annually,
which leads to millions of dollar losses due to the
misdiagnosis or the time-consuming cost of human scouting
[2]. Over the growing seasons, apple orchards are becoming
the target of insects, fungi, bacteria, and other environmental
factors causing the poor quality of fruit and huge economic
losses. Incorrect or delayed diagnosis and treatment can lead
to the rapid spread of diseases. On the other hand, one of the
most popular solutions now is based on the computer vision
technique, which has been proved to be very useful and
promising for image processing, classification, and object
detection [7]. Because of the explosion of computer science
and image processing techniques, Artificial Intelligence (AI)
is now being applied in many aspects of agriculture, and
AI-based equipment and machine learning have taken today’s
agriculture system to a higher level and enhanced the quality
of products by improving real-time monitoring, harvesting,
processing, and diagnosing [8]. Furthermore, from a high level
of image processing, there is one method from deep learning
that has the most attention for computer vision’s application,
which is the convolutional neural networks (CNNs), because it
is specifically designed for image data [7].

Our project addresses not only a single task of detecting
diseased leaves but also proposes an effective approach to
perform multi-tasks of detecting and classifying on the same
digital signal processor using the combination of image
processing and computer vision-based techniques. And from
here, we can further develop other applications on the H7
board to solve more real-world problems. Success at this stage
can lead to the implementation of such models into accessible
technology such as phones or drones which can be used to
sweep large areas of land and give early detection of possible
worrying diseases.

Regardless of the embedded system’s memory
constraints, we wanted to build a very useful application that
can detect and classify a diseased leaf even at the early stage
of the disease.

III. APPROACH

Here, we will go into detail about each group member’s
goal, the theories, the methods, and the strategies we
employed to create a successful model.

A. Team Organization
The team structure would be divided into 2 parts

corresponding to Python and C. Nha Do was in charge of
creating a machine learning model, modified, optimizing a 2D
CNN, and extracting the weights and biases in 16-bit
floating-point such that it could fit into the H7 board. Nha
pruned the model to make it smaller until the number of
parameters is good enough for implementation while keeping
the accuracy and performance as high as possible until it
meets the goal. During the entire project, Nha had created at
least 20 different models by tuning the hyperparameters,

Fig. 1. Examples of healthy, rust, and scab leaves

considering the number of training and testing sets,
manipulating the learning rate, particularly using cropped
images and data-centric algorithms to generate additional
augmented samples. Eventually, three versions were reached:
22,000-parameter model, 17,000-parameter model and
10,000-parameter model. By considering the tradeoff between
accuracy, memory, and speed, we decided to use the
17,000-parameter model. Lucas He was in charge of H7
implementation focusing on developing each layer, optimizing
the code for memory allocation, and deploying effectively on
4 convolutional layers. This involved creating strategies to
allow the H7 to support the models developed by Nha such as
image pre-processing and flash read-in optimization. Lucas
improved the model’s biases in the dense layer by multiplying
with a factor of 5 and dividing the intermediate output by 10
before using this result to calculate the final probability. By
doing so, the overall accuracy was improved and some of the
model’s overturning was fixed.



Even though the tasks were distributed equally, during
the project, we also worked together and proposed the new
idea to help each other out for the mutual final goal.

B. Plan
The main skills required in this project are a background

in machine learning, deep learning, computer vision,
embedded system, digital signal processing, image processing,
Python, and C programming. We collected and analyzed the
training dataset provided by joining an online competition
organized by Kaggle in 2020 [4]. However, the dataset is still
being provided for free and the submission link is still
available.

The roadmap of the project is expressed through the
milestones that the team set at the beginning. By the third
week, we would have a machine learning model completely
built on the cloud with a target accuracy. By the seventh week,
we would have the model deployed successfully into the H7
board and achieve the main goal of detecting if the leaf is
healthy or not. We also considered the stretch goal of
classifying the diseased leaf into appropriate categories and
used the rest of the time (about 2 weeks) for reviewing and
optimizing the entire project one more time.

However, our original plan was not suitable, so for the
first 2 weeks, we got lost and wasted the time switching
around between H7 board and the OpenMV Camera. This
desire stemmed from the initial goal of utilizing the model in a
maneuverable drone with an onboard camera. However,
thanks to the meeting in week 3 with Dr. Briggs and TA
Dezhan Tu to clarify the project, we finally got back on track
as the table below.

C. Standard
Data visualization is one of the most important steps in

the project to transform complex information into an
easy-to-digest chart, thus we decided to use matplotlib and
plotly express from the Python library. Matplotlib library is
more popular and will be easily reproduced by other people
[9]. On the other hand, Plotly Express performs beautiful and
interactive charts with just a clean line of code [10]. A good
understanding of the data will help us to have a better strategy
to tackle the project.

We also used Keras Image Augmentation API to generate
some additional augmented samples such as brightness
adjustment, rotation, flip… to improve the training set because
it is simple and powerful. Keras also provides the
ImageDataGenerator class that defines the configuration for
image data preparation and augmentation [11].

In addition, we used CNNs model, a deep learning
algorithm, to solve our detection and classification problem
because the preprocessing required in a CNNs is much lower
as compared to other classification algorithms and while in
primitive methods filters are hand-engineered, with enough
training, CNNs have the ability to learn these
filters/characteristics [2].

For embeddable weights and biases, we exported them
into 16-bit floating-point types in a model during training to
make it run faster and use less memory [12].

TABLE I
PLAN AND RESULTS

Plan Results

Collect, extract,
visualize and analyze the
dataset in week 1

Joined a ‘Plan
Pathology’ competition on
Kaggle, accepted their rule,
and downloaded the dataset.

Create a CNN model
with the target accuracy
(above 90%) on the cloud
by week 3

The actual accuracy we
achieved at this time is only
about 40%.

Have the model
deployed successfully on
H7 for at least the main goal
of diseased leaf detection by
week 7

We finally achieved the
target accuracy by tuning
some hyperparameters,
adding more additional
augmented samples, and
specifically by cropping the
training dataset. The model
was also successfully
deployed on H7 but there
were still some
inconsistencies and overflow
values (NaN values in
prediction)

Debug, improve,
optimize the model and
work toward the stretch
goal of classifying diseases
by week 9

We figured out the
problem of inconsistency is
because of the defective
flash drive, so we ordered a
new one and fixed that bug.
Up to this point, we were
deploying 2 separate models
at the same time in the H7
chip. The model’s biases
were also adjusted to avoid
overflow and fortunately, by
doing so, we eventually
combined successfully 2
models into 1 to improve the
performance and achieved
both main and stretch goals.

D. Theory
We analyze the influence of pixels by using the 3x3

kernel, and the number of kernels is set up such that it could
fit into the H7 board without overflow. This is the main reason
why we chose to use only 16 kernels at the first 2
convolutional layers because the input size at these layers is
pretty large. The filters will move from the top left corner in
the same way, across the rows then move down the columns
until it reaches the bottom right corner. For each point on the
image, a value is calculated by multiplying and adding the



corresponding weights and biases [13]. The same padding
technique is also used.

Following each convolutional layer is the max-pooling
layer which is responsible for reducing the spatial size of the
Convolved Feature [2]. This also decreases the computational
power required to process the data and we can increase the
number of filters to 32 in the third and fourth layers.

We tried both ReLU and sigmoids as the activation
function, but after many tests, we realized that the ReLU is
more efficient. The ReLU is easier to compute and combats
the vanishing gradient problem occurring in sigmoids [13].

There are also many ways to quantize the model
effectively. We explore that the 16-bit floating-point is simple
and results in the expected halving of memory usage.

E. Software/ Hardware
All of the data pre-processing is performed on Google

Colab using Python so that we can take advantage of Google’s
GPU and all team members can access the notebook. The
training dataset is also uploaded on Google Drive and can be
easily extracted from Google Colab.

We use the NumPy, Pandas, Matplotlib, Plotly, and Cv2
libraries for data cleaning, data analysis, and image
visualization. These libraries are often used and can be
efficiently stored and loaded for either training or testing.
Tensorflow and Keras are used for creating data augmentation,
creating and training the model. TensorFlow is an
open-sourced end-to-end platform, a library for multiple
machine learning tasks, while Keras is a high-level neural
network library that runs on top of TensorFlow. Both provide
high-level APIs used for easily building and training models,
but Keras is more user-friendly because it’s built-in Python
[14]. The framework was developed by Google Brain. After
training, the model weights and biases are saved in text files
using NumPy.

The model is deployed on an STMicroelectronics H7
Nucleo board (STM32H743ZI2) microcontroller, which has 2
MB of flash memory, and 1 MB of SRAM [15]. The CubeIDE
is used for implementing the 2D CNNs model in C. The model
weights and biases are stored on a USB Flash Drive that can
be accessed through a user USB connector on the board.

F. System build/ Operation
The first thing is to explore our dataset. Our raw dataset is

not balanced, we have 4 categories with 1820 images but the
multiple diseases case consists of only 91 images. Due to the
memory constraint and the complexity of RGB image, the 2D
CNNs itself is not good enough for classifying this case, we
must have to use “imagenet” feature to train the model, but it
will be impossible to deploy into H7 because the number of
parameters will be very large (up to millions). We have
decided to get rid of this case to obtain a balanced dataset and
thus, we are able to achieve the target accuracy.

The most important step in our preprocessing is that we
cropped the training images such that the new dataset only
focuses on a very particular spot on each leaf such that the
model can recognize those patterns and detect or classify them

Fig. 2. The distribution of each category

in lieu of using the raw images which contain a lot of
redundant information. The reason for that is because the H7
board can only read the input up to 48x48 in size, hence if we
resized the raw images, they would be very blurry and the
model cannot detect the pattern correctly. By doing this, the
input image will be scaled small enough to train the model.

Fig. 3. Original images (left) vs cropped images (right)

When the new dataset is ready, we split it into 80% for
training and 20% for validation.

The next step is to use data-centric augmentation to
generate additional augmented samples by randomly adjusting
brightness, rescaling, rotating, zooming, flipping vertically or
horizontally, and shifting. The random transformation is
necessary for augmenting the training dataset and making the
model’s learning more nuanced and more diverse. Then, we
generated batches of datasets containing the images and labels,
which will be used later to train. Besides setting up the
training and validation generator, we also used bilinear
interpolation in which it considers the closest 2x2



neighborhood of known pixel values surrounding the unknown
pixel. It then takes a weighted average of these 4 pixels to
arrive at its final interpolated value [16]. This results in much
smoother images.

The model we used consists of four blocks of
convolutional and max-pooling layers followed by two fully
connected layers (including the output layer). The activation
used is ReLU.

Fig. 4. 17k-parameter model architecture (created on
http://alexlenail.me/NNSVG/LeNet.html).

The model was trained by using the ‘Adam’ optimizer
and ‘Categorical Cross Entropy’ loss for up to 100 epochs.

For H7 deployment, we first had to implement our model
in C, which contains 2D convolution (with ReLU activation),
2D max pooling, and fully connected layers with ReLU and
softmax activation. We also loaded the weights and biases of
the model as well as the test images from the USB flash drive
during run time. Note that, since we trained the model with
cropped images, the test images also need to be cropped. The
input images are also needed to be converted to .bmp to save
the memory and during the run time, we cannot load all of
them at once due to memory constraints. Furthermore, as we
are working with color images, the computations are more
complicated and the output values could overflow which leads
to NaN values. To fix this, we adjust the biases by multiplying
with a factor of 5 and dividing the intermediate output by 10
before using this result to calculate the final probability. To
read the .bmp images, we also wrote the function which can
read RGB images (note that RGB images have 3 channels
instead of 1 for Grayscale). During the run time, we load one
image at a time from the file. Once the process is completed,
the weights and biases are loaded and the input image will be
passed through 4 blocks of the model, which will output its
prediction of whether the input leaf is healthy or not, if not so
what kind of disease it is (rust or scab). Our model almost
reaches the upper limitation of H7’s memory, so during the
entire project, we always have to keep track of the memory
usage. Even the array length changes by 1 could lead to a mess
up. After each layer’s computation, the free command needs to
be used to remove the arrays that have completed the task.

IV. RESULTS

A. Description of Results
In the end, we have decided to use the 17,523 parameters

model with 94.8% accuracy.

Fig. 5. Model Architecture

Fig. 6. Model Accuracy

Fig. 7. Model Loss

http://alexlenail.me/NNSVG/LeNet.html


For the testing on H7, we use the 3 images below
(Healthy, Rust, and Scab in order). Note that the second image
is not healthy but a rusty leaf. There are at least 2 small spots
on the leaf. The model is only 80% confident in this case
because it looks like a healthy leaf but it also points out that
the model works pretty well in detecting the diseased leaf even
at the early stage.

Fig. 8. Healthy, Rust, and Scab used for testing

Fig. 9. Final predictions

The real runtime for each prediction is less than 10s
which meets our original goal of less than 30s

B. Discussion of Results
Our training dataset is very imbalanced, the multiple

diseases are only 5% on the entire set, thus, under the global
constraint, we cannot create a good enough model to detect
this category. Lowering the number of 3 other categories to
make the dataset balanced is even worse overall. Therefore, we
came up with a solution to get rid of this category to ensure
the high accuracy of the remaining parts. If we used the

original image (without cropping), we cannot achieve the
target accuracy although we used the larger embeddable model
(22k parameters).

Fig. 10. Model accuracy using original images

The accuracy, in this case, is only 85.59% and the loss is
pretty high as well (0.42).

Fig. 11. Model loss using original images

This is because the original images contain redundant
information and just a few blocks of a 2D convolutional layer
are not enough to handle. On the other hand, the original
dimension is 1365x2048, if we resized it to 48x48, the input
would be very blurry and the model would be very confusing.
Hence, the solution of cropping the images is suitable and in
fact, it helped us to improve the performance. The downside
of this solution is that if we crop a wrong image’s edges, the
prediction will be incorrect. However, to make it embeddable
in the H7 board, this can be considered as an acceptable
solution.

In essence, we can see that the project was a success.
Although we got rid of one of the categories, we still ensure
that it can handle the main task of detecting and classifying
other diseases. The 17k parameter is a nice sweet model
between accuracy and performance.

Since we still use a high number of parameters, if we are
not careful in memory allocation, the overflow can occur at



any point. To address this problem, we can use the idea of the
3D CNN model and try to quantize the model to in8 which
consumes less memory. Also, for a limited memory, if we can
increase the training set to make it better and more diverse, it
will be a sweet solution to enhance accuracy with fewer
parameters. At this time, we have not successfully
implemented the new idea, but we think that the result would
hold and even better for the more complicated techniques.
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